坐标测量机(CMM)一直是测量近50年或更长时间以上固体物体的准确性的基准。然而,随着3D扫描技术的出现,产生的点云的准确性和密度已接管。在这个项目中,我们不仅比较可在3D扫描软件中使用的不同算法,而且还比较了从相机和投影仪等现成组件中创建自己的3D扫描仪。我们的目标是:1。为3D扫描仪开发一个原型,以实现在对象的广泛类型上以最佳精度执行的系统。2.使用现成的组件最小化成本。3.到达非常接近CMM的准确性。
translated by 谷歌翻译
随着机器学习和系统社区努力通过自定义深度神经网络(DNN)加速器,多样的精度或量化水平以及模型压缩技术来实现更高的能源效率,因此需要设计空间探索框架,以结合量化意识的处理。在具有准确和快速的功率,性能和区域模型的同时,进入加速器设计空间。在这项工作中,我们提出了Quidam,这是一种高度参数化的量化量化DNN加速器和模型共探索框架。我们的框架可以促进对DNN加速器设计空间探索的未来研究,以提供各种设计选择,例如位精度,处理元素类型,处理元素的刮擦大小,全局缓冲区大小,总处理元素的数量和DNN配置。我们的结果表明,不同的精确度和处理元素类型会导致每个区域和能量性能方面的显着差异。具体而言,我们的框架标识了广泛的设计点,其中每个面积和能量的性能分别差异超过5倍和35倍。通过拟议的框架,我们表明,与最佳基于INT16的实施相比,轻巧的处理元素可在准确性结果上实现,每个区域的性能和能源改善高达5.7倍。最后,由于预先特征的功率,性能和区域模型的效率,Quidam可以将设计勘探过程加快3-4个数量级,因为它消除了每种设计的昂贵合成和表征的需求。
translated by 谷歌翻译
机器学习已成为包括运动在内的多个领域的工程设计和决策的组成部分。深度神经网络(DNNS)一直是预测职业体育赛事结果的最新方法。但是,除了对这些体育活动成果进行高度准确的预测外,还必须回答诸如“为什么模型预测A团队会赢得与B队的比赛?”之类的问题? DNN本质上是本质上的黑框。因此,需要为模型在运动中的预测提供高质量的可解释的解释性解释。本文探讨了两步可解释的人工智能(XAI)方法,以预测巴西排球联盟(Superliga)中比赛的结果。在第一阶段,我们直接使用可解释的基于规则的ML模型,这些模型可以根据布尔规则列的生成(BRCG;提取简单和 - 或分类规则)和逻辑回归(logReg;允许估算)对模型的行为进行全局理解。功能重要性得分)。在第二阶段,我们构建了非线性模型,例如支持向量机(SVM)和深神经网络(DNN),以在排球比赛的结果上获得预测性能。我们使用ProtoDash为每个数据实例构建了“事后”解释,该方法在训练数据集中找到原型,与测试实例最相似,而Shap是一种估计每个功能在模型预测中的贡献的方法。我们使用忠诚度量标准评估了摇摆的解释。我们的结果证明了对模型预测的解释的有效性。
translated by 谷歌翻译
Multiple studies have focused on predicting the prospective popularity of an online document as a whole, without paying attention to the contributions of its individual parts. We introduce the task of proactively forecasting popularities of sentences within online news documents solely utilizing their natural language content. We model sentence-specific popularity forecasting as a sequence regression task. For training our models, we curate InfoPop, the first dataset containing popularity labels for over 1.7 million sentences from over 50,000 online news documents. To the best of our knowledge, this is the first dataset automatically created using streams of incoming search engine queries to generate sentence-level popularity annotations. We propose a novel transfer learning approach involving sentence salience prediction as an auxiliary task. Our proposed technique coupled with a BERT-based neural model exceeds nDCG values of 0.8 for proactive sentence-specific popularity forecasting. Notably, our study presents a non-trivial takeaway: though popularity and salience are different concepts, transfer learning from salience prediction enhances popularity forecasting. We release InfoPop and make our code publicly available: https://github.com/sayarghoshroy/InfoPopularity
translated by 谷歌翻译
Speech systems are sensitive to accent variations. This is especially challenging in the Indian context, with an abundance of languages but a dearth of linguistic studies characterising pronunciation variations. The growing number of L2 English speakers in India reinforces the need to study accents and L1-L2 interactions. We investigate the accents of Indian English (IE) speakers and report in detail our observations, both specific and common to all regions. In particular, we observe the phonemic variations and phonotactics occurring in the speakers' native languages and apply this to their English pronunciations. We demonstrate the influence of 18 Indian languages on IE by comparing the native language pronunciations with IE pronunciations obtained jointly from existing literature studies and phonetically annotated speech of 80 speakers. Consequently, we are able to validate the intuitions of Indian language influences on IE pronunciations by justifying pronunciation rules from the perspective of Indian language phonology. We obtain a comprehensive description in terms of universal and region-specific characteristics of IE, which facilitates accent conversion and adaptation of existing ASR and TTS systems to different Indian accents.
translated by 谷歌翻译
In molecular research, simulation \& design of molecules are key areas with significant implications for drug development, material science, and other fields. Current classical computational power falls inadequate to simulate any more than small molecules, let alone protein chains on hundreds of peptide. Therefore these experiment are done physically in wet-lab, but it takes a lot of time \& not possible to examine every molecule due to the size of the search area, tens of billions of dollars are spent every year in these research experiments. Molecule simulation \& design has lately advanced significantly by machine learning models, A fresh perspective on the issue of chemical synthesis is provided by deep generative models for graph-structured data. By optimising differentiable models that produce molecular graphs directly, it is feasible to avoid costly search techniques in the discrete and huge space of chemical structures. But these models also suffer from computational limitations when dimensions become huge and consume huge amount of resources. Quantum Generative machine learning in recent years have shown some empirical results promising significant advantages over classical counterparts.
translated by 谷歌翻译
Developing and least developed countries face the dire challenge of ensuring that each child in their country receives required doses of vaccination, adequate nutrition and proper medication. International agencies such as UNICEF, WHO and WFP, among other organizations, strive to find innovative solutions to determine which child has received the benefits and which have not. Biometric recognition systems have been sought out to help solve this problem. To that end, this report establishes a baseline accuracy of a commercial contactless palmprint recognition system that may be deployed for recognizing children in the age group of one to five years old. On a database of contactless palmprint images of one thousand unique palms from 500 children, we establish SOTA authentication accuracy of 90.85% @ FAR of 0.01%, rank-1 identification accuracy of 99.0% (closed set), and FPIR=0.01 @ FNIR=0.3 for open-set identification using PalmMobile SDK from Armatura.
translated by 谷歌翻译
In post-covid19 world, radio frequency (RF)-based non-contact methods, e.g., software-defined radios (SDR)-based methods have emerged as promising candidates for intelligent remote sensing of human vitals, and could help in containment of contagious viruses like covid19. To this end, this work utilizes the universal software radio peripherals (USRP)-based SDRs along with classical machine learning (ML) methods to design a non-contact method to monitor different breathing abnormalities. Under our proposed method, a subject rests his/her hand on a table in between the transmit and receive antennas, while an orthogonal frequency division multiplexing (OFDM) signal passes through the hand. Subsequently, the receiver extracts the channel frequency response (basically, fine-grained wireless channel state information), and feeds it to various ML algorithms which eventually classify between different breathing abnormalities. Among all classifiers, linear SVM classifier resulted in a maximum accuracy of 88.1\%. To train the ML classifiers in a supervised manner, data was collected by doing real-time experiments on 4 subjects in a lab environment. For label generation purpose, the breathing of the subjects was classified into three classes: normal, fast, and slow breathing. Furthermore, in addition to our proposed method (where only a hand is exposed to RF signals), we also implemented and tested the state-of-the-art method (where full chest is exposed to RF radiation). The performance comparison of the two methods reveals a trade-off, i.e., the accuracy of our proposed method is slightly inferior but our method results in minimal body exposure to RF radiation, compared to the benchmark method.
translated by 谷歌翻译
Selective classification involves identifying the subset of test samples that a model can classify with high accuracy, and is important for applications such as automated medical diagnosis. We argue that this capability of identifying uncertain samples is valuable for training classifiers as well, with the aim of building more accurate classifiers. We unify these dual roles by training a single auxiliary meta-network to output an importance weight as a function of the instance. This measure is used at train time to reweight training data, and at test-time to rank test instances for selective classification. A second, key component of our proposal is the meta-objective of minimizing dropout variance (the variance of classifier output when subjected to random weight dropout) for training the metanetwork. We train the classifier together with its metanetwork using a nested objective of minimizing classifier loss on training data and meta-loss on a separate meta-training dataset. We outperform current state-of-the-art on selective classification by substantial margins--for instance, upto 1.9% AUC and 2% accuracy on a real-world diabetic retinopathy dataset. Finally, our meta-learning framework extends naturally to unsupervised domain adaptation, given our unsupervised variance minimization meta-objective. We show cumulative absolute gains of 3.4% / 3.3% accuracy and AUC over the other baselines in domain shift settings on the Retinopathy dataset using unsupervised domain adaptation.
translated by 谷歌翻译
Many real-world learning scenarios face the challenge of slow concept drift, where data distributions change gradually over time. In this setting, we pose the problem of learning temporally sensitive importance weights for training data, in order to optimize predictive accuracy. We propose a class of temporal reweighting functions that can capture multiple timescales of change in the data, as well as instance-specific characteristics. We formulate a bi-level optimization criterion, and an associated meta-learning algorithm, by which these weights can be learned. In particular, our formulation trains an auxiliary network to output weights as a function of training instances, thereby compactly representing the instance weights. We validate our temporal reweighting scheme on a large real-world dataset of 39M images spread over a 9 year period. Our extensive experiments demonstrate the necessity of instance-based temporal reweighting in the dataset, and achieve significant improvements to classical batch-learning approaches. Further, our proposal easily generalizes to a streaming setting and shows significant gains compared to recent continual learning methods.
translated by 谷歌翻译